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A theoretical and numerical investigation of streamwise-oriented Dean vortices in 
curved channel flow is presented. The principal results are obtained from three- 
dimensional pseudospectral simulations of the incompressible time-dependent 
Navier-Stokes equations. With increasing Reynolds number, a sequence of 
transitions similar to that observed in non-turbulent Taylor-Couette flow is found. 
The transition from laminar curved channel Poiseuille flow to axisymmetric Dean 
vortex flow is studied using linear and weakly nonlinear analyses; these results are 
compared to the full simulations. Using the code, two transitions that cause the 
axisymmetric vortices to develop waves travelling in the streamwise direction a t  
higher Reynolds numbers are discovered. The linear stability of axisymmetric Dean 
vortex flow to non-axisymmetric perturbations is examined. Associated with the two 
transitions are two different non-axisymmetric flows : undulating and twisting Dean 
vortex flow, Undulating vortices are similar to wavy Taylor vortices. Twisting 
vortices, with a much shorter streamwise wavelength, are dissimilar ; to our 
knowledge, they have no counterpart in the Taylor-Couette problem. At sufficiently 
high Reynolds numbers, linear growth rates associated with twisting vortices far 
exceed those associated with undulating vortices. For the channel curvatures 
studied, angular speeds of both kinds of travelling waves are only weakly dependent 
on Reynolds number and wavenumber. A bifurcation limits the vortex spacings that 
can be examined and suggests an Eckhaus stability boundary. The development of 
wavy vortex flows from small-amplitude disturbances shows that full development 
of undulating vortices may require a streamwise distance greater than one 
circumference, whereas for sufficiently large Reynolds numbers, twisting vortices 
reach equilibrium amplitude within half this distance and are therefore more likely 
to be observed experimentally. We suggest twisting vortices are due to a shear 
instability. 

1. Introduction 
This work uses analytical and numerical techniques to study curved channel flow 

instabilities. Understanding the transitions that curved channel flow undergoes may 
yield a better understanding of the physics of transition in general, and in other 
curved geometries in particular. 

The flow geometry is shown in figure 1 .  The inner and outer walls of the channel 
have radii of curvature ri and r ,  respectively, and the channel centreline radius is 
rc.  The channel spacing is d = r,,-ri. A non-dimensional measure of the channel 
curvature is the radius ratio 7 = ri/ro. Throughout this work, velocities and lengths 
will be non-dimensionalized by the mean streamwise velocity 0 and $d, respectively. 
We define a Reynolds number Re = U d / 2 v .  The cylindrical coordinate system is 
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FIGURB; I .  The curved channel flow geometry. 

aligned such that ( r ,  0, z )  are the normal, streamwise, and spanwise directions 
respectively. Curved channel flon experiments have streamwise extent less than 
2~ rad if r, is fixed and have finite aspect ratio r = h /d ,  where h is the spanwise 
dimension of the channel. 

At sufficiently small Re, the velocity in infinite-span curved channel flow is purely 
streamwise. I ts  profile is similar to the parabolic profile of plane channel flow, but the 
location of maximum velocity is shifted towards the outer wall. We call this flow 
' curved channel Poiseuille flow ' (CCPF). At higher Re, centrifugal instability causes 
a secondary flow containing streamwise-oriented Dean vortices similar to the Taylor 
vortices of Taylor-Couette flow. Dean vortices occur in regularly spaced counter- 
rotating pairs. (Finite span and other effects may cause uneven spacing.) We define 
a non-dimensional spanwise wavenumber of the vortices as a = xd /h ,  where h is the 
spanwise vortex spacing. 

For given 7 and a ,  linear neutral stability analysis predicts the neutrally stablc 
Reynolds number, Re,,(a), above which axisymmetric Dean vortices have positive 
linear growth rates. For fixed 7,  this result is a neutral stability curve Re,,(a). Dean 
(1928) used a narrow-gap approximation (7 - 1 )  and found the minimum of the 
neutral stability curve, which occurs a t  the critical Reynolds number Re, and critical 
wavenumber a,. CCPF occurs for Re < Re,; Dean vortices occur for Re > Bec. (Re, 
is singular for 7 = 1 ,  so the Dean number De = 2Re(d/ri)g is used in the narrow- 
gap case, for which De, = 35.92.) For the narrow-gap case, Reid (1958) and 
Hammerlin (1958) determined part of the neutral stability curve for a near a,. For 
7 = 0.923, the experiment of Brewster, Grosberg & Nissan (1959) confirmed the 
existence of a critical Reynolds number Re, above which steady Dean vortices 
develop. Sparrow (1964) and Walowit, Tsao & DiPrima (1964) examined the linear 
neutral stability of wide-gap Dean vortices, confirming the value of Re, found 
experimentally by Brewster et al. (1959). 

For 7 2 0.95, Gibson & Cook (1974) examined the linear neutral stability of CCPF 
to infinitesimal non-axisymmetric disturbances with spatial dependence of the form 
f(r) eiaz e'l'. Axisymmetric disturbances have p = 0, a + 0, two-dimensional Toll- 
mien-Schlichting (TS) waves have a = 0, /3 =+ 0, and mixed modes have a $. 0, p + 0. 
For 7 = 1, Squires theorem (Drazin & Reid 1981) indicates that for each unstable 
mixed mode there is a more unstable two-dimensional TS wave. Gibson & Cook 
(1974) showed that this result also holds for narrow-gap curved channels, so it is only 
necessary to consider two-dimensional TS and axisymmetric modes. They found that 
when 0.95 < 7 < (1 -2.179 x axisymmetric disturbances are more unstable 
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than two-dimensional TS modes, but for 7 > (1 -2.179 x the reverse is true. For 
wide gaps, Jankowski & Takeuchi (1976) indicate that axisymmetric disturbances 
are the most unstable. Daudpota, Zang & Hall (1987) obtain weakly nonlinear 
solutions for TS waves, Dean vortices and mixed modes for 7 z 2.179 x lop5. For 
7 + 1, Bennett & Hall (1986) examine the linear stability of nonlinear axisymmetric 
Dean vortices to  TS waves. 

the critical Reynolds numbers for axisymmetric and 
two-dimensional TS modes are close. Transition from plane Poiseuille flow can occur 
via a subcritical bifurcation so, depending on initial conditions, either type of 
instability could develop. The two modes may interact, yielding flows different from 
those induced by either mode alone (cf. Singer, Ferziger & Reed 1987). 

For channels with aspect ratio r < 5, the two-dimensional numerical computations 
of Winters (1987), Shanthini & Nandakumar (1986), Schilling & Simon (1979), 
Cheng, Lin & Ou (1976) and Cheng & Akiyama (1970) describe axisymmetric curved 
channel flow with one or two pairs of vortices. Experiments and analytical 
approximations for square or nearly square channels, all for either axisymmetric or 
time-independent Dean vortices, are discussed in Berger, Talbot & Yao (1983) ; 
analogous results for Taylor-Couette flow suggest that most of these results are 
inapplicable to the large-aspect-ratio case. As well, we find the assumptions of 
axisymmetry and time independence to be valid only for a range of Re > Re,, 
because Dean vortex flow bifurcates to a non-axisymmetric (wavy), time-periodic 
flow a t  higher Re. To our knowledge, the preliminary experiment of Kelleher, Flentie 
& McKee (1980), based on the theses by McKee (1973) and Flentie (1975), represents 
the extent of published experimental work on large-aspect-ratio curved channel flow. 
In  a channel with r = 40, they measured the spanwise spacing of Dean vortices and 
presented flow visualizations. Except for very weakly curved channels, results on 
time-dependent Dean vortices are absent from the published literature. However, 
unpublished experiments by Niver (1987) suggest the presence of wavy vortices in 
curved channel Aow. 

Some work has been done on Dean vortices in turbulent curved channel flow. 
Experimentally, Hunt & Joubert (1979) observed turbulent Dean vortices with 
Re z 125Re,. Using periodic spanwise boundary conditions in a curved channel with 
7 = 0.975 and Re z 20Re,, Moser & Moin (1984, 1987) performed a direct numerical 
simulation of turbulence. They observed turbulent Dean vortices and turbulence and 
discussed the interaction, 

The large amount of work done on Taylor-Couette flow has revealed its rich nature 
(cf. DiPrima & Swinney 1985); similar work is needed on curved channel flow. 
Comparison with the plane channel is not useful, because plane channel flow 
undergoes a subcritical breakdown to turbulence (Nayfeh 1987), without the 
sequence of supercritical bifurcations found in curved channel flow. Gortler vortices 
in the concave boundary layer share some properties with Dean and Taylor vortices, 
e.g. they develop streamwise waviness, but in the boundary layer Re increases 
downstream resulting in a breakdown to turbulence without intermediate deter- 
ministic states (Bippes 1978). 

We shall examine instability and transition in curved channel flow. Spanwise 
periodicity is imposed. The validity of this assumption is demonstrated by the results 
i t  produces in the Taylor-Couette problem ; however, it fails to reproduce finite-span 
features (cf. Stuart 1986) which may occur in the curved channel. In  addition, all 
curved channel flows that we present are fully developed. Channels with only short 
curved sections may not reach these fully developed states. We use 7 = 0.975, except 

For 7 x (1-2.179 x 
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in $ 5 ,  where 7 = 0.875 is also considered. For q = 0.975, Re, = 114.26 and a, = 1.98 

In  $2 we describe the code we use to find solutions of the Navier-Stokes equations. 
I n  $ 3  we discuss axisymmetric solutions containing Dean vortices, i.e. Dean vortex 
flow. In  $4 we present linear and weakly nonlinear axisymmetric stability analyses ; 
these predict some properties of Dean vortices. Sections 5-8 deal with two types of 
non-axisymmetric (wavy) Dean vortices : undulating and twisting Dean vortex flow. 
We examine the linear stability of Dean vortices to wavy disturbances in $5. Flow 
features of wavy vortices are given in $ 6. Approximate estimates of streamwise 
lengths required to reach these fully developed states are given in 8 7.  I n  $ 8 we discuss 
possible wavy instability mechanisms. Concluding remarks are given in 5 9. Chaotic 
or non-deterministic behaviour does not occur for the range of parameters covered 
in this work. 

(cf. $4). 

2. Code implementation 
Using the numerical method of Moser, Moin & Leonard (1983), we obtain three- 

dimensional time-dependent solutions of the incompressible Navier-Stokes equations 
for a curved channel. Periodic boundary conditions are used in the spanwise and 
streamwise directions. A pseudospectral method based on expansion functions that 
satisfy the continuity equation and the boundary conditions is used. Time- 
advancement is implicit for viscous terms and explicit for nonlinear (convective) 
terms. The code is a modification of the one used to study wavy Taylor vortices by 
Moser et al. (1983) and to perform a direct simulation of turbulence in the curved 
channel (Moser & Moin 1984, 1987). For later purposes, we define the discrete Fourier 
transform (in 0 and z )  of the velocity as 6: 

L M  

u(x, t )  = C X 6(r ,  k,, k,, t )  exp (ik,O) exp ( i k , z ) ,  (2.1) 
z=-L m=-M 

2nm 
k --, 2x1 - L < l < L ;  k z = -  , - M < m < M  ,- L, LZ 

where 

are wavenumbers ; L,, L, are the periods in 0 and z ; and 2L + 1 and 2M + 1 are the 
number of Fourier modes used. In  practice, only the (L + 1) 0-modes with 0 < 1 < L 
are used, since a real-valued velocity implies: 

(2.3) 6*(r, k,, Ic,, t )  = C(r, - k o ,  - k,, t ) ,  

where an asterisk indicates the complex conjugate. The spanwise computational 
domain initially includes one complete vortex, pair, i.e. L, = A. Because of the higher 
cost, we do not use random initial disturbances; instead, we use either a numerical 
solution a t  nearby (Re, a ,  q) or the lowest-order terms of an analytical solution due 
to Reid (1958) (cf. Finlay, Keller & Ferziger 1987a) that is appropriate to the narrow 
gap for Re and a on the linear neutral stability curve Re,,(a). The energies in the 
highest modes are monitored to ensure that adequate resolution is achieved. To 
eliminate aliasing errors, the nonlinear terms are evaluated in real space on a grid 
with as many grid points in each direction as the number of modes used in 
transform space. 
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3. Simulation of axisymmetric vortices 
We now present steady axisymmetric solutions of the Navier-Stokes equations for 

RP > Re,. These solutions contain Dean vortices but are not necessarily stable with 
respect to non-axisymmetric perturbations, as we shall see in $5. 

All results in this section have 7 = 0.975 ; a less complete set of results for 7 = 0.875 
indicates no important differences. We choose this 7 to compare with the experiment 
of Kelleher et al. (1980). We use a spanwise resolution of 19 or 29 Fourier modes, the 
higher resolution being used when the lower resolution yields a high-wavenumber 
upturn (‘tail’) in the spanwise energy spectrum. In the radial direction, we include 
Chebyshev polynomials through order 32. 

In the cross-flow plane, contour plots of the cross-flow stream function and the 
streamwise perturbation velocity for one pair of Dean vortices are shown in figures 
2 and 3 for Re = 1.230ReC and a = 2.5. The Stokes stream function in the ( r ,  2)-plane 
is shown in figure 2. Each contour line is a projection of a streamline into this plane. 
We call x = the inflow plane, since the flow in this (r,  @)-plane is towards the inner 
wall ; we term x = h the outflow plane. The streamwise flow is perpendicular to and 
out of the plane of the plot. The inflow region has larger radial velocities than the 
outflow region. This is opposite to the behaviour of Taylor vortices in the usual 
configuration with the inner cylinder rotating (cf. Jones 1985; Marcus 1984). 

The contour plot of the streamwise perturbation velocity uo is shown in figure 3, 
where uo(r, z )  = vH(r ,  x )  - V ( r ) ,  v,, is the total streamwise velocity, and V is the CCPF 
velocity profile : 

V ( r )  = A  

(3.1) 
r2 r2 2 

where G =  E = -10 lny, A = -  
r: In ri - rb In ro 

r: - r,’ r, +E In 7 ‘ r: - r,’ 

Except for CCPF, V ( r i  + 1: V A T ,  2 )  dzlh .  

All velocities are normalized with respect to the mean streamwise velocity 0. The 
general features of figure 3 can be explained by examining the secondary flow 
streamlines shown in figure 2. For example, the inflow near z = &A, r = ro draws fluid 
with low streamwise velocity from the outer wall to the middle of the channel. This 
produces a negative streamwise perturbation velocity near x = $A, r = r,,-id. The 
normal and spanwise velocities, u, and u,, have amplitudes an order of magnitude 
smaller than the streamwise perturbation velocity (cf. Finlay, Keller & Ferziger 
1987a, b) .  

If z = 0 is either an inflow or an outflow plane, the flow has reflection symmetry 
about i t :  

(3.2) 

Uo@, 4 = uo(r, - 21, 

%(Y> 4 = u&, - z ) ,  

u,(r, z )  = -u,(r, h-2). 

This is the axisymmetric version of shift-and-reflect symmetry (Marcus 1984). 
Although we do not enforce the relations between Fourier modes that (3.2) infers, 
they were obeyed to within roundoff error. 
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A measure of the strength of the vortices is the pressure-gradient parameter Ap, 
defined as 

(3.3) 

where -(l/r)(ap/ae) is the streamwise pressure gradient, $/a0 is the value of 
ap/M averaged over the computational box, and -(l/r)(aP/aB) is the stream- 
wise pressure gradient for C,CPF. We compute only the velocity, but @/a0 can 
be obtained from the mean shear stress a t  the walls: 

(3.4) 

where V,(r) is the spanwise-streamwise average of the total streamwise velocity, vg. 
It can be shown analytically for axisymmetric flow (cf. $4) that  ap/&9 is 
independent of r3  z and 0. From the @momentum equation for CCPF we find 

ae (3.5) 

All pressures are non-dimensionalized by p V 2 .  
The quantity A p  plays a role similar to that of the Nusselt number in 

Rayleigh-BBnard convection, or the non-dimensional torque in Taylor-Couette flow. 
Values of Ap  for various Re and a are shown in figure 4. The points with Ap = 0 are 
obtained from linear stability analysis. Because u8 is larger than u, and u,, the 
circulation around a vortex and the mass flow across a plane between two vortex 
centres are not necessarily good measures of the vortex strength. In 94, we shall show 
that for Re close to the neutrally stable value, Rensr Ap  is linear in (Re-Re,,). 

Variations of vortex shape with changing a, R e  are discussed in Finlay et at. 
(1987u, b) .  

3.1. Energy spectra 

The energy in z-Fourier modes decreases exponentially with increasing Jk,J, where 
k, = 21cm/a. For steady axisymmetric flows we define the energy in spanwise modes 
) k z  as 

E(k,)  = c(k,) s" IQ(r, k,)J2 dr. (3.6) 
Ti 

Here, i j(r ,k,)  is the Fourier transform with respect to z of the velocity (see (2.1)), 
and 

1 k = 0 ,  
c ( k )  = i 1 k * O .  (3.7) 

Equation (3.6) accounts for the energy in both modes +k,, so the kinetic energy 
($.") of the flow is given by C f = , E ( k , ) .  

We find lnE(k,) is linear in Jk,l except for Jk,J near zero. A plot of lnE(k,) versus 
k, is shown in figure 5 for Re = 1.230Rec and several a. Similar behaviour was 
observed by Marcus (1984) for Taylor vortices. The explanation of Marcus (1984) can 
be adapted to Dean vortices as follows. 

The mean pressure gradient supplies energy only to the k,  = 0 mode ; for k, =i= 0 the 
only source of energy is nonlinear interactions among triads of modes kk,, k i ,  



424 

h 

W .  H .  Finlay, J .  B.  Keller and J .  H. Ferziger 

0.40 1 

Spanwise wavenumber, a 

FIGUEE 4. A p  for axisymmetric vortices as a function of Re and a :  0, Re = 1.230ReC; 0, 
1.5O3ReC; A, 1.776ReC; +, 2.186Re,,; x ,  2.733ReC. The lines are included to guide the eye 
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FIGURE 5 .  The kinetic energy in the spanwise Fourier modes lk,l as a function of lk,l for several 
a a t  Re = 1.230ReC; (-), a = 1.98; 0 (----), 2 . 5 ;  A (-.-), 3. 

f k, - k i .  Most of tJhe energy coming into k,  is viscously dissipated and only smaller 
wavenumber modes, k i ,  supply energy to k,. For sufficiently large k, these are 
reasonable assumptions. With the additional assumption that In E obeys a power 

(3.8) 
law : 

InE(k,)  = - ylk,lP+ constant, 

i t  can be shown that /3 = 1. 
The slope - y  decreases with increasing a ,  as shown in figure 5. The quantity 

l/lyl is a measure of the fraction of energy passed on to higher wavenumbers from 
each k,. Larger a indicates more closely spaced vortices; therefore, with increasing a,  
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we might expect less energy to be transferred from k,, because the shorter span- 
wise lengthscale causes more dissipation to occur within k,. 

3.2. Vortex doubling 

With Re fixed, we find that a bifurcation to  two pairs of vortices can occur as a is 
decreased. An additional pair of vortices appears in the steady-state solution and 
increases continuously in strength and size as a is decreased over a small range (cf. 
Finlay et al. 1987a). Continuation methods (Keller 1977) should yield results similar 
to those observed for bifurcations from two to four vortices in spanwise periodic 
Taylor-Couette flow (e.g. Meyer-Spasche & Keller 1985). 

With increasing Re similar bifurcations occur. At a = 1.98, a small pair of 
secondary vortices appears for Re between 1.776ReC and 2.186Rec, centred on the 
inflow plane next to the convex wall (cf. Finlay et al. 1987a). The secondary pair 
grows in size and strength as Re increases. For 7 = 0.979, r = 40 and Re > 2Rec, 
similar secondary vortices were found experimentally by P. Ligrani (1987, private 
communication). Using continuation methods, Winters (1987) describes a complex 
bifurcation set in the parameters (7, r, A p )  for transitions between one and two pairs 
of axisymmetric vortices in curved channels with r d 1.5. Shanthini & Nandakumar 
(1986), Cheng et al. (1976), Joseph, Smith & Adler (1975) and Cheng & Akiyama 
(1  970) performed axisymmetric computations in finite-span curved channels with 
aspect ratio r < 5 and found secondary vortices appearing with increasing Be. Hunt 
& Joubert (1979) observed turbulent Dean vortices with pairs of weaker secondary 
vortices occurring between the stronger primary pairs in a curved-channel 
experiment with Re z 125Rec, a NN 2.17, 

In  Taylor-Couette flow for given Re and 7, linear neutral stability analysis predicts 
that a band of Taylor vortex wavenumbers a can occur. For a outside this range the 
flow decays to laminar azimuthal flow. It has been found, however, that the band of 
stable wavenumbers is made smaller by an Eckhaus instability (Dominguez-Lerma, 
Cannell & Ahlers 1986; Riecke & Paap 1986; Kogelman & Diprima 1970), in which 
Taylor vortices are unstable to axisymmetric disturbances. Experimentally, when 
the Eckhaus stability boundary is crossed, the number of vortices in the finite-length 
system usually changes by two (Ahlers, Cannell & Dominguez-Lerma 1983) ; that is, 
a pair is gained or lost. In  his numerical simulations of wavy Taylor vortices using 
periodic spanwise boundary conditions, Marcus (1984) observed a vortex-doubling 
bifurcation (by decreasing a a t  fixed Re and 7) close to the Eckhaus stability 
boundary found experimentally by King & Swinney (1983) for wavy Taylor vortices. 
We have not examined the Eckhaus stability of Dean vortices, but the presence of 
a vortex-doubling bifurcation may indicate an Eckhaus instability in the curved 
channel. The lower a limit of the Eckhaus stability band may be near the vortex- 
doubling bifurcation we observe (cf. Finlay et al. 19870,). 

= 0.99, r= 13.2. 

4. Semi-analytical treatment of axisymmetric vortices 
In this section we present semi-analytical methods for predicting the properties 

and stability of axisymmetric vortices by treating them as a perturbation of CCPF. 
The simplest analytical approach assumes an inviscid fluid. If we define 

I d  
r3 dr  

@ = - - [(rV)']] ,  
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where V is the streamwise velocity of the fluid, then for a flow with concentric 
circular streamlines, a necessary and sufficient condition for invisoid stability to 
axisymmetric perturbations is @ ( r )  S 0 everywhere in the flow field (Rayleigh 1916). 
For the curved channel, using the CCPF velocity profile (3.1) for V ( r ) .  we find that 
@ < 0 when r > ro = e-k e-C, and C is given in (3.1). The value of ro inrreases from 
re  for 7 - 1, to ro = rC+0.O57d/2 at 7 = 0.5; thus the flow is always inviscidly 
unstable. Inviscid stability theory cannot predict a critical value of the Reynolds 
number, Re,. Previous authors (see 9 1) found Re, using linear neutral stability 
analysis. We now turn to linear and weakly nonlinear analysis with Re > Re,. 

Using the framework of weakly nonlinear theory, it is expedient to derive 
simultaneously the linear and weakly nonlinear equations for. Dean vortices. Linear 
stability analysis yields temporal growth rates for small-amplitude axisymmetric 
disturbances to CCPP. Weakly nonlinear analysis provides values of A p  ; we shall 
compare these values with those obtained from fully nonlinear simulation to provide 
insight into the validity of the weakly nonlinear analysis. Thc following analysis 
closely parallels the procedure gikm hsv DiPrima (1967) or Davey (1962) for the 
Taylor vortex problem (see also Stuart 1960; Watson 1960). The readcr is referred 
there or to Pinlay et al. (1987a) for a more complete exposition. 

As discussed in 9 1, if we restrict our analysis to 7 < ( 1  - 2.179 x we do not 
need to consider either two-dimensional Tollmien-Schlichting or mixed modes. 

For given RP,  a and 7 ,  the axisymrnetric flow in a curved channel can be 
characterized as a perturbation to purely azimuthal flow : 

v, = u( r , z , t ) ,  vo = v( r , z , t )+V( r ) ,  vz = w( r , z , t ) ,  p = p’(r,z, t ,O)+P(r,e),  
(4.2) 

where the CCPF solution provides the velocity B and pressure P. Substituting (4.2) 
into the Navier-Stokes equations, we find that ap’lae is independent of r ,  z and 8, 
and aP/ae is independent of r ,  z ,  6, t .  As a result, we define 

aPf - = ha@) 
a6 (4.3) 

ap 
- = H = constant. ae (4.4) and 

Following Davey (1962) we expand the perturbation flow in Fourier series 

m 

v ( r ,  z ,  t )  = wUo(r, t )  + ‘c vn(r ,  t )  cosnaz, 
n-1 

00 

~ ’ ( r ,  z , t ,  6 )  = pa(r ,  t ,  6 )  + C Pn(r7 1 )  c o ~  naz, 
n=1 

W 

u(r ,  z ,  t )  = C naun(r, t )  cosnaz, 
n=1 

m 

w( r ,  z ,  t )  = C wn(r,  t )  sinnuz, 
n-1 

(4.5) 



Instability and transition in curved channel flow 427 

- aA+a1A3+a2A5+ ..., 
dA 
dt 
- _  (4.91 

where Qn = ( u n ,  va) and Qnm = (Unm,  vnm). 
The appearance of the linear growth rate (T in (4 .9)  is consistent with the O(A)  

exponential temporal growth prediction of linear stability analysis. Here, (T is 
assumed to be real, which is the 'exchange of stabilities' ansatz and indicates a 
Landau type of bifurcation (Drazin & Reid 1981). That (T is real and not complex is 
verified by the exponential growth we observe in nonlinear runs with weak 
axisymmetric vortices. We now substitute (4.2)-(4.9) into the Navier-Stokes 
equations with appropriate boundary conditions. Terms O(A) give the linear 
stability problem, that is 

(4.10) 

where L, and M ,  are matrix differential operators given in the Appendix. We solved 
(4.10) numerically using an initial-value method. 

For v = 0 and given y, this eigenvalue problem yields the neutral stability curve 
Re,,(a), found by previous authors. For fixed cr > 0 and given y, curves through the 
values of Re and a with equal linear growth rates are obtained. From these curves, 
it is apparent that, for each Re, there is a wavenumber that has maximum growth 
rate. Figure 6 gives the curve joining the values of a having maximum (T a t  each Re. 
Also shown is the curve joining the a values having maximum A p  a t  various Re, 
obtained from figure 4 .  The finite-amplitude Dean vortices observed experimentally 
by Kelleher et al. (1980) had wavenumber a x 2.55 for all three Reynolds numbers 
2.14Rec d Re < 3.07Rec they examined; a varied across the span of their channel. 
This variation is indicated in figure 6 by adding standard-deviation error bars to the 
three data points presented by Kelleher et al. (1980). (Their channel had r = 40 and 
y = 0.979 and their vortices were probably non-axisymmetric (cf. $ 7 ) . )  The turbulent 
Dean vortices in the experiment of Hunt & Joubert (1979) had a x 2.17 for Re x 
125Re,, q = 0.99 and a channel with aspect ratio r= 13.2. Based on figure 6, 
maximizing (T or Ap does not select a. Above Rec, linear stability analysis predicts a 
band of stable wavenumbers. This band is probably narrowed by an Eckhaus 
stability boundary (cf. $3.2). Any a in this Eckhaus stable band may occur, and non- 
uniformities in the initial flow and channel walls probably affect the wavenumber 
selection. Based on results obtained for Taylor-Couette flow, this band might be 
further restricted by adding a spanwise section of channel in which the channel width 
varies (cf. Dominguez-Lerma et al. 1986). 

Returning to the weakly nonlinear analysis, we do not expand the linear growth 
rate as 

(T = ( T O S + O ( € 2 ) ,  (4.11) 

(L, + (TM,) Q,, = 0, ul0 = Du,, = wl0 = 0 a t  r = ri, y o ,  
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where E = Re- Rens, as some authors have done for the Taylor vortex problem 
(Davey 1962; also see DiPrima & Swinney 1985). Instead, we use the u calculated 
from linear stability analysis. If CT is assumed to depend on Re according to (4.11), 
we shall find that A = O($) for small E .  From (4.7), this implies that the a,mplitude 
of the nth Fourier mode behaves asymptotically as Q ,  = O(C*/~) .  In  the Taylor 
vortex problem this asymptotic behaviour holds up to the surprisingly large value of 
€/Re,  z 1 a t  a, and 7 = 0.612 (Gollub & Freilich 1976) ; however, this does not occur 
in our nonlinear simulations. For example, a t  the critical wavenumber and 7 = 0.975, 
the fundamental Fourier mode Q, approximately obeys the asymptotic power law 
only for € /Re ,  < 0.1. 

Terms O ( A 2 )  in the substitution of (4.2)--(4.9) into the Navier-Stokes equations 
give 

(4.12) 

uoo = 0 a t  r = ri, ror (4.13) 

and (L +2uM2) Qzo = Szo, (4.14) 

(4.15) 

Here D, D* are differential operators given in (A 5) ; S,, is a quadratic function of the 
linear stability eigenfunctions ul0, vlo, and L, and M, are matrix differential 
operators. These are given in the Appendix. 

With (4.10) solved, S,, is determined and Q,, can be found. We solve (4.14) and 
(4.15) using an initial-value method similar to that used in solving (4.10). We solve 
(4.12) and (4.13) using a shooting method. The constant h,, is determined by solving 
(4.12) and (4.13) subject to the mass flux constraint 

u2,, = Du,, = o,, = 0 at r = ri ,ro.  

(4.16) 
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which follows from O ( A 2 )  terms in 

(4.17) 
J r ,  J O  

Recall that one objective of this analysis is to find the pressure-gradient parameter 
Ap. From (3.3), (4.3), (4.4) and (4.8) we have, to @ A 2 ) :  

(4.18) 

The value of H from (4.4) is given in (3.5). 
From our fully nonlinear simulations we know that a steady solution is reached, 

so that the Landau constant a, in (4.9) is negative (the instability is supercritical). 
The steady-state value of A is determined from (4.9) by neglecting terms 0(L45)  and 
letting t --f CO, which gives 

A = (+). (4.19) 

Substituting this equation into (4.18), we have 

(4.20) 

The only unknown remaining on the right-hand side of (4.20) is the Landau constant 
a,. We determine a, in the manner outlined in UiPrima (1967) ; the reader is referred 
there or to Finlay et al. ( 1 9 8 7 ~ )  for the derivation of the following formula: 

(4.21) 

The notation (flg) indicates the inner product 

(fig) = 1; ~ , & g i d ~ >  whcref= (fllfi), g = (91,92). (4.22) 

In  (4.21), S,, is a function of a,,,, uz0, z1,,,, zil0, vuz0 given in the Appendix : i t  appears in 
the equation obtained by keeping terms O(A3)  with vi = 1 in (A 8 ) :  

(4.23) 

In (4.21), Q:, is the solution of the equation adjoint to (4.10), i.e. 

(Li + UM;) Q:, = 0, = Du:, = = 0 a t  r = ri, ro, (4.24) 

where superscript t indicates matrix transpose. Equation (4.24) is solved in the same 
manner as (4.10). 

Equations (4.10), (4.12)-(4.15) and (4.24) must be solved to obtain a, from (4.21) 
and, finally, to evaluate A p  from (4.20). Comparisons of the values of Ap obtained in 
this manner to those obtained by the fully nonlinear simulations presented earlier arc 
shown for various a and Re in figure 7. For Re near Re,,, i t  can be seen from (4.11), 
(4.20) that A p  behaves linearly with (Re-Re,,). At large a the weakly nonlinear 
approximation gives excellent results well into the nonlinear region, as shown in 
figure 7 (b ,  c ) .  For smaller a ,  however, noiilinearities involving modes neglected by 
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the weakly nonlinear approximation are important, and the accuracy of the wcakly 
nonlinear approximation is seriously impaired at  higher Re, as shown in figure 7 ( a ) .  
These observations are consistent with the result discussed in $3.1 that the slope, 
-7, of energy spectra (see (3.8)) becomes steeper with increasing a. The value of 
E(Gn/a)/E(Bn/a) is the ratio of the energy in the most energetic mode neglected by 
the weakly nonlinear theory to the energy in the fundamental mode. From full 
simulations, we find E(Bn/u)/E(Bn/a) to be approximately 35 times larger a t  a = 2.5 
than at  u = 5.0 for the same value of e = Re-Re,, z 30. The accuracy of the 
O ( A 2 )  weakly nonlinear assumption clearly depends on a as well as Re. 

5. Linear stability of Dean vortex flow to non-axisymmetric perturbations 

disturbances by writing the flow as 
We now examine the linear stability of Dean vortices to non-axisymmetric (wavy) 

(5.1) 

where vD(r,  z )  represents an axisymmetric vortex flow obtained as in $3. The physical 
velocity field is the real part of (5.1). The complex temporal growth rate, v-iw, 
allows oscillatory growth or decay. The parameter ,8 is a given real-valued 
streamwise wavenumber. The streamwise wavelength is 

v(r ,  8, z ,  t )  = u(r ,  z )  e(n-iw)t elPo+ vD(r, z ) ,  

p = 2qp. 

The curved channel geometry defined in $ 1 must have continuous streamwise extent 
less than 27~rad. Channels that spiral inward (or outward) can have longer 
streamwise lengths, but they do not have constant curvature; therefore, they do not 
satisfy our curved channel definition. Based on these considerations, we restrict our 
attention to /? Z 1. Equation (5.1) implies that the non-axisymmetric disturbance 
travels with angular speed sz = w / p .  ( 5 . 2 )  

For given (Re, a ,  q), we examine the stability of non-axisymmetric perturbations 
with given /3 by substituting (5.1) into the Navier-Stokes equations. We could 
linearize the resulting partial differential equations, but instead choose to use the 
three-dimensional nonlinear code described in $ 2. Disturbances with spanwise period 
different from that of vD are not considered; therefore, we cannot observe the 
subharmonic modes that occur in Taylor-Couette flow for q < 0.5 (Tooss 1986; Jones 
1985). We choose the streamwise length of the computational region to be 2x/,8.  The 
initial conditions contain a weak non-axisymmetric perturbation from vD.  The 
solution progresses in time until e('-iw)t time dependence occurs. We use 19 spanwise 
Fourier modes, 7 streamwise Fourier modes (M = 9 and L = 3 in (2.1)), and 
Chebyshev polynomials up to order 32 in the radial direction. 

If z = 0 is a t  either an inflow or an outflow plane of Dean vortex flow, then a non- 
axisymmetric perturbation is called 'in phase' if i t  satisfies the same reflection 
symmetry property as the flow it is perturbing, i.e. if i t  satisfies ( 3 . 2 ) .  An out-of-phase 
mode satisfies (3 .2 )  with h replaced by i A .  I n  general, a non-axisymmetric 
perturbation is neither in phase nor out of phase, but is a linear combination of these 
two types of modes. For 9 > 0.5 and a stationary outer cylinder, Taylor vortices are 
linearly stable to in-phase non-axisymmetric disturbances (Davey, DiPrima & 
Stuart 1968; Jones 1981 ; Jones 1985). Instability is determined by disturbances that 
are out of phase; this is true for Dean vortices as well. Energy in in-phase modes 
decays rapidly, leaving significant energy only in the out-of-phase modes. For the 
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FIGURE 9. Linear growth rate, g, of non-axisymmetric disturbances to Dean vortex flow (at a = 
2.5 ,  T = 0.975) as a function o f B  < 40, and Re: 0, Re = 1.230Re,; 0, 1.503ReC; a, 1.776ReC; 
+ , 2.186ReC; x , 2.733Rec. 

Re, a,  / 3 , ~  we consider, all sufficiently small-amplitude growing disturbances of the 
form (5.1) are out of phase to within roundoff error. Fully developed, nonlinear, non- 
axisymmetric Dean vortices are neither in phase nor out of phase, which is also true 
for wavy Taylor vortices (Marcus 1984). 

For given 7, we obtain a-io a t  various (Re, a,  /3) and determine a neutral stability 
curve ReA,(a). For p 2 1 ,  we find that disturbances with /3 = 1 become unstable a t  the 
lowest Re. The neutral stability curve Reh,(a) is shown in figure 8. The value of 
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0, 1.503ReC; A, 1.776Rer; +, 2.186Elr,. 

Reis(a) is not given for a < 1.6 because an additional pair of axisymmetric vortices 
appears in vD (cf. $3.2). The neutral stability curve &,,(a) for perturbations of CCPF 
by axisymmetric disturbances is included for reference. From figure 8 it  is seen that 
axisymmetric vortices are stable to non-axisymmetric disturbances only for a small 
range of Re above R P ~ .  This is also observed in Taylor-Couette flow a t  this radius 
ratio (Jones 1981). 

Figure 9 gives a(P) for several Re a t  a = 2.5, r = 0.975. Although &i’ = 1 is the first 
to become unstable, modes with p > 1 have larger positive growth rates for Re > 
Re;,. For Re >, 1.503Rec, the maximum growth rate occurs near P z 15. 

As in Taylor-Couette flow, the angular speed, 0, of the travelling wave is only 
weakly dependent on the parameters Re, a ,  p. For a = 2.5,  Q(p) is given a t  several Re 
in figure 10. These values are for small-amplitude disturbances; the nonlinear wave 
speeds are slightly different (cf. $6 and figure 21). For a in the range considered here, 
figures 9 and 10 do not change qualitatively with a. (See Finlay et al. 1987a for the 
variation of v and Q with a . )  

Examining non-axisymmetric disturbances a t  higher @, we find behaviour not 
observed in Taylor Couette flow. For fixed a ,  the disturbance with largest positive 
growth rate shifts to much higher p when Re increases above a certain value. For 
a = 2.5 and 7 = 0.975, this result is depicted in figure 11 ; a larger range of Re and p 
than in figure 9 is shown. There are two local maxima in a(p) ; we define p, and Pt 
as the positions of the maxima with lower and higher p, respectively. Both Pt and 
pu depend on Re, a ,  7. As shown in the following sections, wavy Dean vortex flows for 
the two ranges of /3 are dissimilar. We use the terms ‘twisting ’ and ‘undulating ’ 
vortices to mean wavy vortices with P near pt and pu, respectively. For the Re shown 
in figure 11,  a(Pt) increases monotonically with increasing Re. In  contrast, cr(Pu) 
increases from zero, at Re;,, to a maximum a t  some Re and then decreases with 
further increases in Re ; this is shown clearly in figure 9. We define Re:, as the value 
of Re a t  which cr(Pt) = 0. It represents the Reynolds number above which twisting 
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FIGURE 12. Linear growth rate, m, of non-axisymmetric disturbances to Dean vortex flow a t  
a = 2.5, 7 = 0.875 for Re = 2.270ReC ( O ) ,  and Re = 3.153ReC (0). 

vortices may occur. We also define Re, as the Reynolds number a t  which o-(Pu) = 
u(Pt). By interpolation, Re, z 2.11ReC and Re;, z 1.96ReC for a = 2.5, q = 0.975; 
Re, and Re:, are functions of a and q. For Re sufficiently greater than Re,, o-(Pt) 9 
cr(Pu). This behaviour provides the most significant difference between curved 
channel and Taylor-Couette flows. 

Shown in figure 12 is g(P) for two Re with a = 2.6, 7 = 0.875; these are 
qualitatively similar to those in figure 11,  for which 7 = 0.975. Both Pu and Pt scale 
roughly with the number of channel spacings in a circumference, i.e. the non- 
dimensional wavelengths 27cr,/Pu and 2nr,/Pt are nearly the same for both radius 
ratios. By interpolation, Re:, z 2.58Re, for 7 = 0.875, which is higher than for q = 
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FIGURE 14. Angular wave speed 52 of small-amplitude non-axisymmetric disturbances to Dean 
vortex flow a t  a = 2.5,  11 = 0.875 for Re = 2.270ReC (m), and Re = 3.153Re, (0). 

0.975 ; Re, = 52.4 a t  7 = 0.875. These results are in contrast to the nearly constant 
behaviour of RelRe, for transition to wavy Taylor vortices a t  these two (Jones 
1981). 

The value of p observed experimentally depends on upstream conditions and linear 
growth rates. If the latter are dominant, then for Re;, < Re < Re, long-wavelength 
undulating vortices should occur, but for Re 2 Re, the short-wavelength twisting 
vortices should be found. For Re;, < Re < Re;, only undulating vortices are possible. 
For Re z Re,, v(Pu) z u(pt) and upstream conditions may determine which type of 
waviness occurs. Indeed, nonlinear runs with Re z Re, result in either undulating or 
twisting vortices, depending on initial conditions. 
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Near Re, both types of waves could occur simultaneously. Nonlinear runs with 
Re x Re,, with both types of waves well resolved and contained in initial conditions, 
did not yield mixed flows. For Re < 8.199Re,, the equilibrium state was always either 
pure undulating or pure twisting vortices. 

The behaviour of the angular wave speed, 52, as a function of p and Re is given in 
figure 13. The speeds of the two types of waves are nearly equal and are only weak 
functions of Re. For Re > Re, and large /3 in the range considered, Q(p) is nearly 
constant. Figure 14 gives Q ( p )  for two Re with a = 2.5,  7 = 0.875; comparing with 
figure 13, 52 decreases as 7 decreases. For both 7, 52 is only weakly dependent on $ 
and Re. For wavy Taylor vortices with 0.693 < 7 < 0.950, King et al. (1984) found 
SZ decreased monotonically as 7 decreased. 

6. Simulation of nonlinear non-axisymmetric vortices 
In  this section we examine nonlinear, non-axisymmetric solutions of the 

Navier-Stokes equations for Re > Re;, and 9 = 0.975. Most of our results have a = 
2.5 ; we choose this value because, experimentally, Kelleher et al. (1980) observed 
vortices with a x 2.55 and Hunt & Joubert (1979) observed a x 2.17. 

6.1. General remarks 

Fully developed wavy vortices are travelling waves in which the flow pattern travels 
with uniform angular velocity 52. This is similar to the behaviour of wavy Taylor 
vortex flow. Specifically, the velocity satisfies the spatio-temporal property of a 
travelling wave (Rand 1982) : 

u ( r ,  (B+52At) mod2K//3,z,t+At) = u(r ,  B , z , t ) .  (6.1) 

In  the literature on wavy Taylor vortices the alternative term 'rotating wave' is 
sometimes used. Setting At = 0 in (6 .1)  implies streamwise periodicity with 
wavenumber $; setting At = 2x/ (Q$)  shows that the travelling wave has temporal 
periodicity with frequency w = Q/3. I n  addition, wavy vortices have shift-and-reflect 
symmetry (cf. Marcus 1984) : 

(6 .2)  

within roundoff error. The strengths of the travelling waves grow with Re. 
We define E'")(k,) as the sum of the energy of all modes with spanwise wavenumber 

O L  
k k, : 

E@)(k,)  = c ( k , )  J 2 c(k,)  [I@", k", k,, t)l2 + lixr, k,, -kz ,  t)lZ1 dr ,  

E("(k,) = c(ktt) 1:; C c@,) [ lC(r ,  k,, k,, t ) l z  + 16(rl - k,, k,, t )YI  dr. 

(6.3) 
ri 1=0 

where c ( k )  is given by (3 .7) ,  and 6(r ,  k,, k,, t )  is the Fourier transform of the velocity, 
given by (2.1). We have used (2 .3)  to account for modes with k, < 0 .  Similarly, the 
energy of the + _ k ,  modes is defined by 

M 

(6.4)  
m-0 

For equilibrium-state travelling waves, and E@o) are time independent. 
As in wavy Taylor vortex flow (Marcus 1984), lnE(")(k,) and lnE(@(k,) are linear in 
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(k,l and lk,,l, except when lk,l is near a or (E,I is near p. In  $3.1 we gave an explanation 
for thc linear behaviour of In E””(k,) for axisymmetric vortices. The argument used 
there can be applied directly to lnE(z)(k,) for the non-axisymmetric case, and to 
InE”‘))‘(k,) by replacing all references to z with 8 and realizing that energy transfer 
occurs from the mean pressure gradient only to the k, = k, = 0 mode. With 
increasing IkJ,  lnE(”)(k,) drops less rapidly for wavy vortices than for the 
corresponding axisymmetric vortices a t  the same a ,  R e ,  7.  We monitor the adequacy 
of the spatial resolution by observing whether lnE(Z)(kZ) and In E(@(k , )  are linear up 
to the maximum Ik,( and Jk,J allowed. 

Wavy vortices are temporally periodic, so temporal power spectra contain energy 
only in integer multiples of the fundamental frequency, w .  We simulate the spectra 
obtained by a probe that moves a t  constant angular velocity, O,, in the streamwise 
direction. We find that such ‘flying hot wire’ spectra have w shifted by an amount 
equal to pSZ, ; all frequencies with non-zero energy are integer multiples of the shifted 
fundamental frequency. This demonstrates that wavy Dean vortex flow is a 
travelling wave. That the waviness is a travelling wave is also justified by Theorem 
1 of Rand (1982), who showed for certain curved flows that if a stationary 
axisymmetric state ( e g .  Dean vortex flow) bifurcates to a non-axisymmetric time- 
dependent state that is an attracting periodic orbit (e.g. wavy Dean vortcx flow), the 
new time-dependent state must be a travelling wavc. 

In the curved channel, the speed of all travelling waves we observe is less than the 
maximum streamwisrl fluid velocity, i.e. rQ < max,,o,n wH(r, 8, z ,  t ) .  At a given instant 
there are two surfaces on which u, is equal to the speed of the travelling wave. For 
wavy Taylor vortices there is only one such surface; for Taylor vortices that are 
neutrally stable to non-axisymmetric disturbances with given p, Marcus (1984) finds 
that the ‘comoving surface’ associated with the speed of a wave with this /3 passes 
through the vortex centres. In the curved channel, we find that neither comoving 
surface passes through the vortex centres. 

6.2. Flow features 
We now consider some wavy Dean vortex velocity fields. Shown in figure 15 are 
arrow plots of the cross-flow velocities for undulating Dean vortex flow with Re = 
1.776Re,, a = 2.5, p = 15 FS ,8,. The resolution is 63 x 33 x 19 (the number of modes 
in 0, r ,  z ) .  The spatial grid has this resolution in each direction (cf. $2) but, for visual 
clarity, not all points in the grid are shown. The plots represent the cross-flow 
velocities for a sequence of ( r ,  2)-planes. The streamwise flow is perpendicular to and 
out of the plane of the plots. Only half a streamwise wavelength is shown, since the 
other half of the sequence can be obtained from the shift-and-reflect property (6.2). 
Since the flow is a travelling wave, figure 15 is equivalent to a temporal sequence of 
the cross-flow Velocities a t  one streamwise location. The spanwise locations of the 
vortex centres oscillate considerably. At each 8, one of the vortices in the pair is 
weakened, while the other is strengthened. This flow bears remarkable resemblance 
to the wavy Taylor vortices shown in figure 6 of Marcus (1984) for Taylor-Couette 
parameters that correspond to the curved channel flow parameters Re = 2.063ReC, 
/3 = 6, a = 1.047, r/ = 0.875. 

Arrow plots of the cross-flow velocities for twisting vortices with Re = 2.186Re,, 
a = 2.5, /3 = 135 x Pt are shown in figure 16; 95 x 33 x 19 resolution was used. The 
streamwise wavelength is that  of the undulating solution shown in figure 15. Again, 
only half a streamwise wavelength is shown. In  contrast to undulating flow, the 
spanwise locations of the vortex centres in figure 16 oscillate only a little. For each 
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i = 6 plot. Plots for 9 < i < 16 are a reflection about z = +A of the plot a t  i -8 .  
onto ( r ,  2)-planes for 0 = (27t/P) ( i /16),  i = 0 , 1 , 2 , .  . .  ,8. All nine plots have axes as given in the 

8, one of the vortices in figure 6 appears more rectangular and weakened, while the 
other is more circular and strengthened. 

Contours of ug, vr and v, associated with figures 15 and 16 are given in Finlay et al. 
( 1 9 8 7 ~ ) .  The cross-flow velocities distort the CCPF velocity profile by momentum 
transport to and from the walls, as discussed in $3  for axisymmetric vortices. 

Examining figure 16 and contour plots of streamwise vorticity, i t  is shown that as 
6 increases, the radial position of a twisting vortex moves closer to the inner wall 
when the vortex is strong and moves outward when the vortex is weak. Because there 
are strong (6,  z )  shear layers at both walls, and ( r ,  0) shear layers between the vortices 
(cf. $8), vortex lines do not just form tubes centred around the Dean vortices. 
However, by examining vorticity and velocity fields and vortex lines for these flows, 
we find that the only vortical structures are the streamwise-oriented Dean vortices ; 
all other vorticity is associated with the shear layers just mentioned. 

In  Taylor-Couette flow experiments, the inflow and outflow regions of wavy 
vortices are visualizea by suspending reflecting flakes in the fluid. These flakes align 
with the direction of flow, and variations in their orientation are observed as 
variations in transmitted or reflected light intensity (cf. DiPrima & Swinney 1985). 
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FIGURE 16. Twisting Dean vortex flow at Re = 2.186Re,, a = 2.5, p = 1 3 5 , ~  = 0.975 projected onto 

Plots for 10 < i < 18 are a reflection about z = kA of the plot at i-9.  
( r ,  z)-planes for B = (2x//3) (i/l8), i = 0, 1 ,2 , .  .. ,9 .  All ten plots have axes as given in the i = 9 plot. 

To reproduce the qualitative features of such a flow visualization from numerical 
simulation data, Marcus (1984) evaluated 

B(0,z )  = J;:$/(t$+g)dr; 

B is largest in inflow and outflow regions, although the experimental flow 
visualization does not correspond to a well-defined mathematical quantity. In  
figure 17 we plot lines through the two peaks of B for undulating vortices a t  Re = 
1.776Re,, p = 15 and a = 2.5. Two streamwise wavelengths are shown. The higher 

peak of B corresponds to the inflow region. The much lower peak of B near the 
outflow region is nearly discontinuous a t  two values of 0 per streamwise wavelength. 
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I 
0 I 

Streamwise distance, 0 2P 

FIGURE 17. The line drawn through the higher peak of B(19,z) 5 J;v,2/(vl+v:)dr for undulating 
Dean vortex flow at Re = 1.776ReC, a = 2.5, p = 15, q = 0.976. (-) corresponds approximately 
with the inflow boundary. See text  for explanation of line through lower peak of B (----). 

0 1 
.O Streamwise distance, 0 2P 

FIGURE 18. Approximate inflow boundary (-) for twisting Dean vortex flow at Re = 2.188Rec, 
a = 2.5,  p = 135, q = 0.975 determined from B, which is defined in figure 17. B has two local peaks 
(0) near the outflow region and is not useful in determining a n  outflow boundary. 

Discontinuities are not observed in the velocity flow field (cf. figure 15). With the 
exception of these discontinuities, the outflow region corresponds roughly with this 
peak of B,  although figure 15 gives a better idea of the position of the outflow 
region. 

In  wavy Taylor vortex experiments, the spanwise displacement of the inflow 
region is larger than that of the outflow region. In addition, the maximum spanwise 
deflections of the two regions occur a t  quite different, values of 0 (e.g. the inflow and 
outflow regions appear out of phase in 0 by nearly + 27c//3 in Marcus 1984). These 
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FIGURE 19. Ap versus Re for Dean vortex flow (-), undulating Dean vortex flow (O) ,  and 
twisting Dean vortex flow (A), at a = 2.5, 7 = 0.975. The values of /3 for the undulating Dean 
vortex flow points are /3 = 13,15,15 corresponding to RelRe, = 1.503, 1.776, 2.186. The twisting 
Dean vortex flow points have /3 = 135,180,200,200 corresponding to RelRe, = 2.186,2.733,5.466, 
8.199. 

features are not apparent in undulating Dean vortex flow. I n  contrast to  wavy 
Taylor vortices, the inflow region for wavy Dean vortices has larger cross-flow 
velocities than the outflow region. 

For twisting vortices, the parameter B is not useful in determining an approximate 
outflow boundary, because at  some streamwise locations B has two peaks near the 
outflow region, in addition to the single peak at the inflow region. Figure 18 shows 
the peaks of B for twisting Dean vortex flow a t  Re = 2.186Rec, /3 = 15 and a = 2.5. 
Two streamwise wavelengths are shown. Examining figure 16, we see that for this 
flow the outflow region is quite wide in z ,  with large radial velocities occurring a t  two 
separate locations near the outflow sides of both vortices. This leads to  two peaks in 
B near the outflow region. As for undulating vortices, and in contrast to wavy Taylor 
vortex flow, the points of maximum spanwise deflection of the inflow/outflow regions 
occur at roughly the same streamwise location. 

The two types of waviness differ from each other in their effect on Ap (cf. (3 .3)) .  
For undulating vortices Ap is lower than for (unstable) axisymmetric vortices a t  the 
same Re, a, 7. This is similar to  Taylor-Couette flow in which wavy Taylor vortices 
have lower torque than the axisymmetric vortex flow. I n  contrast, twisting vortices 
cause higher Ap than the corresponding unstable Dean vortex flow. Shown in 
figure 19 are values of Ap as a function of Re a t  a = 2.5 for axisymmetric vortices and 
for several wavy solutions with /3 near Pu or pt. 

For Re 3 2.733Rec we examined solutions having /3 2 180, where linear growth 
rates of non-axisymmetric disturbances are greatest. For Re 2 2.733Rec, n(pJ >> 
@3,) (cf. $ 5 ) ,  and in the absence of nonlinear wavelength selection mechanisms, 
twisting vortices occur. 

Twisting vortex flow a t  Re = 2.733Rec, a = 2.5, p = 180 is similar to that a t  Re = 
2.186ReC, a = 2.5, p = 135 discussed earlier. The cross-flow velocities of a twisting 
wave solution a t  Re = 5.466ReC, a = 2.5, p = 200 are shown in figure 20;  95 x 33 x 35 
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FIQURE 20. Twisting Dean vortex flow a t  Re = 5.466ReC, a = 2.5,  /3 = 2 0 0 , ~  = 0.975 projected onto 

The velocity represented by an  arrow in figure 16 would appear f as long if drawn in this 
figure. 

( T ,  2)-planes for 6' = (2n/p) (i/ 18), i = 0, 1,2,  ... ,9. All ten plots have axes as given in the i = 9 plot. 

resolution was used. The vortex boundaries are contorted in the ( r ,  2)-planes shown in 
figure 20. Oscillation of the inflow jet's direction causes a more complex flow near the 
inner wall than a t  lower Re. Contour plots of u,, v, and v, are given in Finlay et al. 
(1987a). As a t  lower Re, the cross-flow velocities distort the streamwise velocity. 
As Re increases, the cross-flow velocities and, therefore, the distortion increase. The 
flow a t  Re = 8.199Rec, a = 2.5, /3 = 200 with 127 x 33 x 39 resolution is similar to the 
flow a t  Re = 5.466Rec, a = 2.5, /3 = 200. 

Let 
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be the spanwisestreamwise average of v6 for a travelling wave flow, and L ( r )  3 

?“vo(T)  be the mean streamwise angular momentum profile. For sufficiently large Re, 
E(r)  is nearly constant except near the walls where boundary layers occur (cf. Finlay 
et al. 1 9 8 7 ~ ) .  

Shown in figure 21 as a function of Re, and with a = 2.5, are values of the angular 
wave speed, Q = @//I, for wavy vortices. For Re < 2.733ReC the value of $ used is not 
constant ; it is near /3, for the undulating vortex flows, and near /It for the twisting 
flows. For large Re < 8.199ReC the angular speed of the travelling wave is only a 
weak function of Re. For wavy Taylor vortices, S2(Re) curves have a plateau for a 
range of Re (King et al. 1984). In  figure 21 the flat region near the upper values of Re 
in the Q(Re) curves may be part of such a plateau. For comparison, we include the 
values of Q for the small-amplitude travelling waves of 95;  these values are near 
those for nonlinear waves, as is the case for wavy Taylor vortex flow (Jones 
1981). 

In  a run with Re = 10.931ReC, a = 2.5, $ = 200 and the Re = 8.199ReC velocity 
field as initial condition, a vortex-doubling bifurcation of the type discussed in 93 
occurred. When the single vortex pair solution from Re = 1.776ReC, a = 2.5, $ = 15 
was used as initial condition for Re = 1.776ReC, a = 1.5, /3 = 10, a similar vortex 
doubling occurred. The discussion on axisymmetric vortex bifurcations in 9 3 is 
applicable to the non-axisymmetric case ; an Eckhaus stability boundary may be 
present. 

A second fundamental frequency, w 2 ,  appears as a transient in the early part of 
twisting vortex runs. While w2 is present, the flow is quasi-periodic, since w and w 2  
are incommensurate frequencies. The energy in o2 eventually dies out, leaving the 
periodic travelling wave that is twisting flow. All flows, with or without w2, obey the 
shift-and-reflect symmetry property (6.2). Simulations of spectra obtained in moving 
reference frames show w2 to be a decaying non-propagating oscillatory mode, and not 

15 F1,U 191 
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a travelling wave. The nature of this mode is discussed in Finlay et al. (1987a). For 
KP > 5Ke, in their Taylor-Couette experiment with 7 = 0.877, Fenstermaoher, 
Hwinney & Gollub (1979) observed a transient frequency, w 2 ,  with features similar to 
the one we observe. 

7. Experimental wavy Dean vortex flow 
To the authors’ knowledge, other than Pinlay et al. (1987b) the only published 

mention that Dean vortices are wavy a t  high Be is the comment by Kelleher et al. 
(1980) : ‘Observations of the flow patterns a t  much higher Reynolds number ’ (Re “N 

3.44ReC, M. 1). Kelleher 1986, privatc communication) ‘indicated that the flow took 
on a streamwise periodicity in the form of longitudinal waves superposed on the 
secondary flow which would travel down the vortices in the direction of flow ’. The 
waves had /3 z 200 (M. D. Kelleher 1986, private communication). All data presented 
by Kelleher et al. (1980) is for a rectangular channel with r = 40, ReL < 2.14Re, ,< 
Re < 3.07ReC, a “N 2.55, 7 = 0.979. The data in figures 4-6 of Kelleher et al. (1980) 
were obtained with a hot wire oriented parallel to the z-axis by slowly moving a hot 
wire across the channel in the z-direction a t  several radii 135” from the start of 
curvature. High-frequency oscillations appear in the hot-wire signal of figure 6 of 
Kelleher et al. (1980) taken a t  Re = 3.07ReC. (Our runs with Re up to 8.199NeC never 
become turbulent.) The time taken by their probe to cross one vortex pair was much 
less than any travelling wave period, so the signal due to a travelling wave would 
appear as a high-frequency oscillation. Based on linear growth rates a t  Re = 
3.07KeC, therefore, we suggest that  the data of Kelleher et al. (1980) a t  Re = 
3.07ReC represent a twisting vortex flow. At Re = 2.14ReC and Re = 2.57ReC, rapid 
oscillations are not readily visible in their hot-wire signal, probably because their 
recording station is too far upstream for wavy disturbances of sufficient amplitude 
to have developed from upstream conditions. 

7.1. Streamwise development 
The following analysis provides qualitative estimates of the streamwise development 
of vortices arid travelling waves. We assume that the flow a t  the entrance to the 
curved section (0 = 0) is CCPF with small-amplitude disturbances. Most experi- 
mental curved channels have a plane channel section leading into the curved 
section, so the entrance flow is actually plane Poiseuille flow; however, CCPF is 
similar to plane Yoiseuille flow for 7 sufficiently near unity. 

First, consider the streamwise development of Dean vortices. A t  given RP,  a, y an 
approximation to the flow is obtained a t  each 0 by considering the weakly nonlinear 
solution of 34. This solution is axisymmetric and has time behaviour A ( t )  (cf Drazin 
& Reid 1981). where A obeys the Landau equation given by dropping terms higher 
than O(A3)  in (4.9). Streamwise development of the flow can be approximated with 
temporal evolution of the weakly nonlinear solution by assuming that 

i.e. that  the flow seen by an observer moving a t  the mean velocity is tJhe same as the 
tcmporally developing flow. Substituting this into the solution of the Landau 
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equation, A(t),  we obtain the following approximation for the vortcx amplitude 
normalized by its fully developed value, A, : 

(7.2) 

Here, A ,  = A(0) and (T is the linear growth rate from 54. Based on our assumption 
of slightly perturbed CCPF a t  0 = 0, we assume At + A ;  and write (7.2) as 

(7 .3 )  

From (7 .3)  we see that changing the amplitude of the solution a t  B =  0 to Ah 
yields 

where 

(7.4) 

(7.5) 

Therefore we need to consider (7.3) with only one value of A, /A , ,  since "/A, for other 
values can be obtained using (7.4) and (7.5). 

To estimate A J A , ,  we use the weakly nonlinear result given in (4.18) to obtain 

where Apo is the prcssure-gradient parameter a t  0 = 0, and Ap, is the fully developed 
value. Within the O(Az) accuracy of the weakly nonlinear approximation we also 
have 

which is obtained using (3.6), (4.2), (4.5) and (4.7); E ,  and En are the final and initial 
values of E(kz)  given in (3.6). In the range of Re, a ,  7 considered in this section, the 
weakly nonlinear solution has streamwise perturbation velocity much greater than 
its radial or spanwisc velocity, so we may approximate En(2n/a) as follows. If we 

where uo = vo- V is the streamwise perturbation velocity, then 

(7.9) 

For a good quality wind tunnel we might expect u' z 0.1 %o; from full simulations 
with a = 2.5, 7 = 0.975 and 1.230ReC < Re < 2.733ReC we find E,(2n/a) z 0.01 and 
0.0788 < Ap, < 0.240, so that  (7 .7)  implies Ap, z lop5. Using this value of Ap, and 
knowing Ap,, we use (7.6) in (7.2) to evaluate A / A , .  Figure 22 shows A / A ,  as a 
function of 0 a t  various Re for a = 2.5, 7 = 0.975. Increasing Re causes the position 
a t  which the vortices are fully developed to move upstream ; the value of B a t  this 
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FIGURE 22. Amplitude A of weakly nonlinear Dean vortex solution, relative to steady state value 
A, ,  as a function of streamwise position (0 = U t / r , ) ;  for a = 2.5, 7 = 0.975 and various Be: 
0, Re = 1.230ReC; 0, 1.503ReC; A, 1.776Rec; +, 2.186Rec; x ,  2.733ReC. 

position approaches a constant for large Re. Based on (7.4) and (7.5),  the curves for 
a different initial pressure-gradient parameter, Aph, (see figure 24) can be obtained 
from figure 22 by shifting each curve to the left by an amount 

(7.10) 

Now consider the development of wavy perturbations of Dean vortices. We 
assume the waviness is the result of a supercritical Hopf-type bifurcation, so that the 
amplitude of the wavy disturbance obeys a Landau equation. We then relate 
temporal growth with streamwise development and proceed in the same manner as 
for Dean vortices. For given Re, a ,  7, we define 0, as the position a t  which the flow 
becomes unstable to wavy disturbances. (Because CCPF is stable to small-amplitude 
wavy disturbances for the Re considered here, such disturbances will not amplify 
until Dean vortices of sufficient amplitude have developed.) We assume wavy 
disturbances grow from small-amplitude A ,  a t  8, to their final amplitude A ,  in the 
manner given by (7.2) with 8 replaced by 8-8, and u interpreted as either o(P,) or 
u(&) from $5. To obtain A,/Af for wavy disturbances, we use Ap, = in (7.6) and 
interpret Apf as the magnitude of the difference between Ap for the non-axisymmetric 
and (unstable) axisymmetric equilibrium state solutions. The value of A / A ,  for 
travelling waves is shown in figure 23 as a function of 8 a t  several Re for a = 2.5,  

= 0.975. At each Re in this figure we arbitrarily assume 0, is the position where the 
inlet disturbances to  CCPF have grown into Dean vortices with A / A ,  = 0.9 ; using 
other 8, merely shifts the curves left or right. The curves with Re >, 2.186Rec are for 
twisting vortices, and with Re d 1.776Rec are for undulating vortices. We see that 
fully developed undulating vortices may not occur within 360" of the inlet. Their 
development can be enhanced by artificially inducing large-amplitude waviness a t  
8,. (We obtain undulating vortex solutions in a time t < 2nrc /0  by using a large- 
amplitude non-axisymmetric perturbation of axisymmetric vortices as initial 
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FIGURE 23. A / A ,  of weakly nonlinear travelling wave, as a function of streamwise position (0 = 
Ut / r , )  ; for a = 2.5, r) = 0.975 and various Re : 0, Re = 1.230ReC ; 0, 1 .503Rec (undulating waves) ; 
A, 1.716Rec; +, 2.186ReC (twisting waves). We assume the travelling wave starts growing once 
A / A ,  = 0.9 for Dean vortices. 

447 
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FIGURE 24. Streamwise position (0 = IJt/rc) at which weakly nonlinear Dean vortices and 
travelling waves have A / A ,  = 0.9 for various values of Ap,,. Dean vortices: (0, -) Ap0 = 
(A, -.-) A ~ , ,  = 10-5; ( x , --- ) Ap,, = (+,  """..) Twisting wave: (0, ----) Ap,, = 
AP,, = 10-5, (0,  --I ~ p , ,  = 10-6. 

condition.) The Re a t  which twisting vortices become apparent in an experiment for 
given a, q depends on the method of measurement and the upstream conditions. 
Figure 23 is in agreement with our earlier comments regarding the experiment of 
Kelleher et al. (1980), in which travelling waves of sufficient amplitude to be recorded 
by their hot wire at B = 135' occurred when Re = 3.07Re,, but not a t  the two lower 
Re. 



448 W .  H .  Finlay,  J .  R. Kpller and ? J .  H .  Fprziger 

Increasing the amplitude of the disturbances moves the stages of vortex 
development upstream. For example, shown in figure 24 as a function of Rr, for 
several values of Apo, is the position a t  which AIA,  = 0.9. Based on (7.7)-(7.9), the 
range of Apo shown corresponds approximately to  0.0004 < u'lu < 0.004. The effcct 
of an increase in either the disturbance level or 1Ze on the vortex development 
decreases as Re increases. Niver (1987) (7 = 0.979, r= 40) found that 'moderate 
unsteadiness ' developed in smoke visualizations a t  streamwise locations similar to 
those for twisting vortices in figure 24. We suggest this unsteadiness was caused by 
twisting waves. 

For 7 = 0.975, these results indicate that a minimum distance of roughly inr, is 
needed for the full development of Dean vortices from small-amplitude disturbances, 
and much longer lengths are required when Re z Re,. Twisting vortices develop 
within a distance xr, from the start of curvature if Re > 2 . 5 R ~ , ,  while fully developed 
undulating vortices may not occur within one circumference. Thus we expect that 
experiments with streamwise extent less than 180" would first see Dean vortices and 
then, a t  higher Re, twisting Dean vortices. This result is true for both 9 considered. 
It is consistent with the experiments of Kelleher et al. (1980) and Niver (1987), but 
is in contrast to the behaviour of Taylor-Couette flow in which the undulating mode 
dominates. 

8. Instability mechanisms 
Here, we propose shear instability as a mechanism for the development of twisting 

vortices. The streamwise perturbation velocity for Dean vortex flow is uo(r ,z )  = 
zo(r,  z )  - V ( r ) ,  where V ( r )  is the CCPF velocity profile given in (3 , i ) .  A t  a given radius, 
uH usually has opposite sign a t  the inflow and outflow regions (cf. figure 3). Thus, 
vo as a function of z for given r must have two inflexion points near z = +A and z = 
$A, where z = 0 is an inflow or outflow plane. Such a velocity profile may be unstable 
to shear instability. 

We use terms to O(A)  in the weakly nonlinear approximation of zo(r ,z)  (cf. $4), 

wo(r, z )  = V(r)+Av,,(r)  cosaz+O(A2),  (8.1) 

to examine whether Dean vortices may be unstable in this manner. Because it is the 
inflexion points in vo(r ,z )  that are important for shear instability, we reduce the 
problem to one dimension, making it amenable to Orr-Sommerfeld- type analysis, by 
averaging (8.1) over r .  (Neglecting the finite radial extent of the shear layer may be 
a severe approximation.) Keeping terms to O(A) ,  this yields 

U ( z )  = 1 + €  cosaz, (8.2) 

where 

is a function of Re, a ,  7. We assume 7 x 1 in order to approximate the curved channel 
by a rectilinear one. We then perform a classical Orr-Sommerfeld analysis. Two- 
dimensional small-amplitude perturbations to the velocity profile U ( z )  can be written 
in terms of a stream function: 

(8.3) 
Equation (8.3) is a two-dimensional approximation to the three-dimensional small- 
amplitude disturbance given in (5.1). The interpretation of p, u, o is the same as in 

Y(6, z ,  t )  = $ ( z )  ei@' e(v-ico)t. 
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FIGURE 25. Linear growth rates of shear instability discussed in $8, a t  Rr = 1.264ReC (0, -), 
and Re = 2.579ReC (0, ----) compared to the linear growth rates of non-axisymmetric 
disturbances from $ 5 :  (A, -.-) Re = 1.230Re,, (+,  ........ ) Re = 1.l76Rec, ( x ,  ) Ra= 
2.186ReC, (0 ,  -) Re = 2.733ReC; a t  a = 2.5, 7 = 0.975. 

(5.1). Making use of (8.3), we reduce the Navier-Stokes equations to the 
Orr-Sommerfeld equation with periodic boundary conditions. For given (Re, a ,  p, 7)  
this is an eigenvalue problem for cr-iw and the complex-valued eigenfunction $ ( x ) ,  
which we solve by a Galerkin approach; $ is expanded in a Fourier series as 

M M 

$ ( z )  = d, cosnaz+ C P ,  sin naz. (8.4) 
n-0 n=1 

The equations decouple into M + 1 equations for the d,, and M equations for the 
en (cf. Finlay et al. 1987a). As discussed in $5, a disturbance with all en = 0 is in 
phase, while a disturbance with all d, = 0 is out of phase. We solved the eigenvalue 
problems using M = 20. For the range Re ,< 2.733Re,, p < 250, a = 2.5 that we 
examine, u < 0 for in-phase modes. Thus, as in 95, i t  is out-of-phase modes that 
determine stability. In  figure 25, cr(p) is given for out-of-phase modes at  two Re with 
a = 2 . 5 , ~  = 0.975. The linear growth rates obtained in 95, from the two-dimensional 
eigenvalue problem for non-axisymmetric disturbances, are included for reference. 
Each cr(p)-curve from the one-dimensional, Orr-Sommerfeld analysis has a single 
maximum. The value of /3 a t  this maximum is close to pt (cf. 95) ; /3, is much smaller. 
Thus, Orr-Sommerfeld analysis suggests twisting vortices are due to a shear 
instability. The maximum linear growth rates found here are larger than those 
obtained in $5. In addition, the neutrally stable Reynolds number for twisting 
waves, Re:,, predicted by the one-dimensional analysis for a = 2 . 5 , ~  = 0.975 is below 
the value obtained in $5. However, it is unreasonable to expect a one-dimensional 
analysis to duplicate more than the general features of the two-dimensional 
problem. 

For a = 2 . 5 , ~  = 0.975, the wave speed Q = w / p  given by Orr-Sommerfeld analysis 
for out-of-phase modes is independent of Re and p :  SZ = 0.012658, i.e. there is no 
dispersion. (Temporal, linear stability analysis of the free shcar layer with velocity 
profile U ( z )  = 0.5(1+ tanhz) also predicts an absence of dispersion (Maslowe 1985).) 
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FIGURE 26. Contours of radial vortieity, w,, in (6, +planes for twisting Dean vortex flow at 
Re = 2.186ReC, a = 2.5, /3 = 135, 11 = 0.975, r = r C - @ .  

Recall that  nonlinear wavy vortices are associated with a non-dispersive travelling 
wave. Travelling wave speeds for small-amplitude non-axisymmetric disturbances 
are found in $5 and are given for 7 = 0.975 in figure 13; the values of SZ predicted by 
one-dimensional shear instability analysis are near these wave speeds. 

A characteristic of shear-layer instabilities is that a row of vorticity maxima or 
minima, depending on the orientation of the shear layer, develops along the line of 
inflexion points (Drazin & Reid 1981). If twisting waves develop from a shear 
instability, then in a (B,z)-surface, we cxpect two rows of concentrations of radial 
vorticity, w,, per spanwise wavelength, one row consisting of positive vorticity and 
one of negative vorticity. The rows should be centred near the inflexion points of the 
velocity profile, a t  z z +;A, +$A, + iA , .  . . , and should alternate in the spanwise 
direction. The existence of such vorticity extrema provides evidence that twisting 
vortex flow is due to shear instability. Shown in figure 26 are contours of w, a t  r = 
rC-$  for twisting vortices at Re = 2.186Rec, a = 2.5, /3 = 135. 

Although undulating and twisting vortices are both travelling wave flows, they 
differ considerably. They may result from two different types of instability to non- 
axisymmetric disturbances. As just discussed, we propose that twisting waves result 
from a secondary shear instability. Using an inviscid analysis, a similar suggestion 
was made by Jones (1985) to explain the instability of Taylor vortex flow to wavy 
disturbances (see also Davey et ul. 1968). However, twisting Dean vortex flow and 
wavy Taylor vortex flow are dissimilar, while undulating vortices and wavy Taylor 
vortices are similar. We suggest that  undulating vortices and wavy Taylor vortices 
are due to  a diffcrent type of instability than the one responsible for twisting vortex 
flow. To our knowledge, twisting vortices are not observed in the Taylor-Couette 
problem. Shear instability may not occur in Taylor-Couette flow, because the 
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streamwise shear layers are weaker than those in curved channel flow. This is a 
consequence of two factors: first, the shear layers have wider spacing in 
Taylor-Couette flow, i.e. experimental Taylor vortices have h z 2d compared to h x 
1.25d for Dean vortices; second, the streamwise shear layers of both flows are caused 
by inflow/outflow between regions with large and small vo, but the radial separation 
of these regions is id in the channel as opposed to d i n  Taylor-Couette flow. Thus, for 
a given vortex strength, Dean vortices cause stronger streamwise shear layers. 

Marcus (1984) postulates that wavy Taylor vortex flow is due to a secondary 
centrifugal instability that arises from the curvature of streamlines as they encircle 
a vortex centre. If we place a coordinate system (r ' ,  O', z') a t  a vortex centre, with the 
(r ', 0')-plane parallel to the ( r ,  2)-plane, then Dean vortex flow streamlines, shown in 
figure 2 ,  indicate that 0' angular momentum as a function of r' violates Rayleigh's 
stability criterion (4.1) a t  the inflow and outflow planes. A secondary centrifugal 
instability is a possible explanation for the development of undulating vortices ; 
however, we have not produced any convincing evidence for such an instability 
mechanism. With both inner and outer cylinders rotating in the Taylor-Couette 
problem, far too many different flows occur (cf. Andereck, Liu & Swinney 1986) to 
be explained by one-dimensional secondary instability mechanisms. The instability 
responsible for undulating vortices and the many Taylor-Couette flows may be 
inherently two-/three-dimensional. 

Marcus (1984) suggests that wavy Taylor vortices are due to a secondary 
centrifugal instability of the outflow boundaries and at higher Re the second 
travelling wave that occurs in modulated wavy vortex flow is due to a secondary 
centrifugal instability of the inflow boundaries. Because of the similarity of 
undulating vortices to wavy Taylor vortices, a modulated wavy Dean vortex flow 
occurring in the curved channel might be expected to  be composed of two undulating 
waves. For sufficiently large Re, however, linear growth rates suggest that  twisting 
waves predominate. Both inflow and outflow regions of twisting vortex flow could 
develop undulating waves via a secondary centrifugal instability mechanism. Based 
on the wavelength of undulating waves and wavy Taylor vortices, these would be 
long wavelength waves. The flows that occur in the curved channel with increasing 
Re before turbulence (chaos) occurs remain to  be discovered. 

9. Summary and conclusions 
Curved channel flow provides an interesting geometry in which to examine 

instability and transition. Three-dimensional simulations of curved channel flow 
were used to  study Dean vortices. Weakly nonlinear analysis of axisymmetric Dean 
vortices is accurate in only a limited range of Re and a. Linear stability analysis of 
non-axisymmetric disturbances shows that disturbances that are iz out of phase (in 
the spanwise direction) with the axisymmetric vortices lead to wavy vortex flows. 
Spatial energy spectra for Dean vortex flow and wavy Dean vortices show 
exponential behaviour as a function of wavenumber. All flows studied obey shift- 
and-reflect symmetry to within roundoff error. Both axisymmetric and non- 
axisymmetric Dean vortices also show a vortex-doubling bifurcation, which may 
indicate the presence of an Eckhaus stability boundary. Such a boundary would limit 
the range of wavenumbers that can be observed experimentally. 

Two distinct types of travelling wave flows arise: undulating and twisting Dean 
vortex flow. The angular speeds of travelling waves computed from linear theory are 
close to the actual speeds (even for large-amplitude waves), are only weakly 
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dependent on Re,a ,p ,  and decrease with 7 .  For the two 7 values examined, 
streamwise wavelengths of the most unstable travelling waves scale with the channel 
spacing. With increasing Re, disturbances with small streamwise wavenumbers 
become unstable first, producing an undulating vortex flow similar to wavy Taylor 
vortex flow. For Re > RP;,, a second type of instability occurs a t  shorter wavelengths 
and yields twisting Dean vortex flow as a consequence of a secondary shear 
instability. For Re > Re:,, axisymmetric vortices are unstable to both types of 
travelling waves, but no modulated wavy vortex flows were found for Re < 8.199ReC. 
For Re $ Re;,, linear growth rates associated with twisting vortices far exceed those 
associated with undulating vortices ; therefore twisting vortices, not undulating 
vorticcs, should be observed at sufficiently high Re. Analysis indicates that  full 
development of undulating vortices requires a streamwise distance greater than one 
circumference, while twisting vortices reach steady state within approximately 7cr, 
when Re > 2.5ReC (for q = 0.975). Thus the undulating mode should be difficult to 
observe experimentally, while the twisting mode, whose existence in Taylor-Couette 
flow has not been demonstrated, should occur. Evidence for twisting vortex flow is 
found in the experiments of Kelleher et al. (1980) and Niver (1987). 

In  Taylor-Couette flow with 7 = 0.875, the transition to modulated wavy Taylor 
vortex flow is followed a t  higher Re by the development of weak turbulence, which 
is associated with a strange attractor (Brandstater & Swinney 1987). Turbulent Dean 
vortices have been observed by Moser & Moin (1984, 1987) a t  Re z 20Re, and by 
Hunt & Joubert (1979) a t  Re z 125Re,. The route that curved channel flow follows 
between wavy Dean vortex flow and turbulent Dean vortices remains for future 
work. 

The authors gratefully acknowledge NASA Ames Research Center for the use of 
their computing resources; this use was supported by the Air Force Office of 
Scientific Research under contract AF-84-0083. One of us (W.H.P.) would like to 
thank the Natural Sciences and Engineering Research Council of Canada and the 
Alberta Heritage Scholarship Fund for their financial support. The work of J. B. K. 
was supported by AFOSR, ONR and ARO. 

Appendix 
The equations for the eigenfunctions of $4 are derived as follows. Substituting (4.2) 

into the non-dimensional Navier-Stokes equations in cylindrical coordinates and 
making use of the equations obtained when u = v = w = p' = 0 yields 

The continuity equation becomes 

aw 
ax D*u+- = 0, 
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(A 5) 
a a 1  

where we have defined D E - ,  I)*=-+-. 

The boundary conditions are 

ar ar r 

u = v = w = 0 a t  r = ri.r,. (A 6) 

Substituting (4.5) into (A 1)-(A 4) we equate coefficients of cosnaz and sin 'naz, 
eliminate w, by using the continuity equation, and eliminate p ,  by using the third 
momentum equation. Performing the tedious algebra yields 

where Q, = (u,, w,), and S ,  is a complicated quadratic function of ui and vi not given 
here because the final equations only require the first few terms of S,. The matrix 
differential operators L, and M, are 

and the boundary conditions become 

v, = 0, u, = v, = Dun = 0 a t  r = r i , ro ,  n > 1. (A 10) 

Appropriate initial conditions for v,, u,, on are also necessary, but we shall seek only 
the steady-state solution, which is independent of these initial conditions. Equations 
(4.10), (4.12)-(4.15) follow by substituting (4.6)-(4.9) into (A 7 )  and (A 8).  

As defined in $4. the first component of S,, is 

-Du,,D2u,,-- 
r 

Dzul, 3 
r r2  

D3~,,---- 

and the second component is 

t 4 V I O  Du,, -%o %,). 

The first component of S,, is 

1 3 
2r 2r2 

- uz0 D3u,, -- D 2 ~ , , ~ , ,  + - U ~ , D ~ , ,  - 3a2uz0 Du,, - ul0 u2, 
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and the second component is 
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r 

1 3 
+ - 2 2110 Du20 +% u 2 0  Z ' l O  + a 1 0  nu00 + - a10 woo 
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